新北师大版七年级下《6.1感受可能性》教学设计
1.通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)
2.知道事件发生的可能性是有大小的.(难点)
一、情境导入
在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?
二、合作探究
探究点一:必然事件、不可能事件和随机事件
【类型一】 必然事件
一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )
A.摸出的4个球中至少有一个是白球
B.摸出的4个球中至少有一个是黑球
C.摸出的4个球中至少有两个是黑球
D.摸出的4个球中至少有两个是白球
解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件.故选B.
方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件).若是不确定的,则该事件是不确定事件.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】 不可能事件
下列事件中不可能发生的是( )
A.打开电视机,中央一台正在播放新闻
B.我们班的同学将来会有人当选为劳动模范
C.在空气中,光的传播速度比声音的传播速度快
D.太阳从西边升起
解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件.故选D.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型三】 随机事件
下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°.其中是随机事件的是________(填序号).
解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件.故答案是①③.
变式训练:见《学练优》本课时练习“课堂达标训练”第6题
探究点二:随机事件发生的可能性
掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数( )
A.一定是6
B.是6的可能性大于是1~5中的任意一个数的可能性
C.一定不是6
D.是6的可能性等于是1~5中的任意一个数的可能性
解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数.要求可能性的大小,只需求出各自所占的比例大小即可.第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B错,D对.故选D.
方法总结:不确定事件的可能性有大有小.骰子在掷的过程中,每个点数出现的可能性是一样的.
变式训练:见《学练优》本课时练习“课堂达标训练”第11题
三、板书设计
1.必然事件、不可能事件和随机事件
必然事件:一定会发生的事件;
不可能事件:一定不会发生的事件;
必然事件和不可能事件统称为确定事件;
随机事件:无法事先确定一次试验中会不会发生的事件.
2.随机事件发生的可能性
教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去
下载地址:
相关内容