苏科版数学九年级下第七章“锐角三角函数”教材分析和教学建议
一、教材分析
1、地位、作用
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段,在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,即本章内容.在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程.无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的基础.与此同时,本章为学生提供了更加广阔的探索空间,可以开阔思路,发展学生的思维能力,有效改变学生的学习方式.
2、主要内容
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容.锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度.
本章需要落实五个教学内容:锐角三角函数的概念;特殊角的三角函数值;根据三角函数值求角度;解直角三角形的含义;实际问题与解直角三角形.
本章需要认识三个教学要点:基本点――对锐角三角函数的认识与应用;支撑点――相似和勾股定理;能力提升点――组合图形的转化求解,根据具体问题构造直角三角形.
二、教学目标
1、课标对教材的总体要求
(1)通过实例认识锐角三角函数(sinA,cosA,tanA),知道300,450,600角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.
(2)运用三角函数解决与直角三角形有关的简单实际问题.
2、课标对本章内容的具体要求
(1)了解锐角三角函数的概念,能够正确应用sinA,cosA,tanA表示直角三角形中两边的比;记忆300,450,600角的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角的度数;
(2)能够正确地使用计算器,由已知锐角求它的三角函数值,由已知三角函数值求出相应的锐角;
(3)理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;
(4)通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角形的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受.
三、教学重点、难点
1、教学重点:锐角三角函数的概念,解直角三角形及其简单应用.
2、教学难点:锐角三角函数的概念;掌握300,450,600角的三角函数值.
三、教材的编写意图
1、正确处理数学,社会,学生三者的关系,适应科技发展的形势,关注社会进步的需求,更新对数学基础知识和基本技能的认识,注重培养理性精神和创新意识,提高学生发现、提出、分析和解决问题的能力.
2、遵循认知规律,为学生创造自主探究,合作交流的空间,为教师营造教学创新的氛围,为师生互动式教学提供丰富的资源.促进现代信息技术与数学课程的整合,改进教材的呈现方式,提高学生学习数学的兴趣.
四、学情分析
学生前面已经学习了函数、四边形、相似三角形和勾股定理的知识,已经掌握了直角三角形各边、各角之间的关系和函数的基本概念,能够熟练地利用勾股定理解决有关直角三角形的问题.为锐角三角函数的学习提供了研究的方法,具备了一定的逻辑思维能力和推理能力,通过以前的合作学习,具备了一定的合作与交流的能力,会观察、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理.但在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解,学生很难想到对于任意锐角,它的对边、邻边和斜边的比值也是固定的实事,关键在于教师引导学生比较、分析、得出结论.
五、教学建议
在本章,学生首次接触到以角度为自变量的三角函数,初学者不易理解,应注意,只有让学生正确理解锐角三角函数的概念,才能掌握直角三角形边与角之间的关系,才能运用这些关系解直角三角形.因此在教学中将采取以下策略:
1、认真?研教材、选择教法,选取的例子要深入浅出,让教学内容一脉贯通.突出学数学、用数学的意识与过程.因为锐角三角函数的概念是本章的重点、难点和关键,因此,如何选取例子引入这个概念就显得尤为重要,在教学三角函数的应用时尽量和实际问题联系起来,减少单纯解直角三角形的问题,让学生感觉自然,熟悉和容易理解.
2、重视学生记忆的环节,充分运用现代信息技术.教师要引导学生对定义、基本公式、性质等进行记忆,并检查和督促,因为这是整册书学习的基础,如果忽略了这一环节的工作,我们的教学将会是事倍功半,甚至是徒劳无功的.三角函数定义的记忆在解直角三角形这章中显得尤其重要,学生只有在熟记的基础上才能谈得上运用,形成技能,发展思维.
另外,教师应当在学生理解并能正确应用公式、法则等进行计算的基础上,指导学生用计算器完成较为繁杂的计算.在课堂教学、课外作业、实践活动中,鼓励学生用计算器进行探索规律等活动.
3、注意数形结合,自然体现数与形之间的联系.数形结合是一种重要的数学思想和数学方法,是几何学习必不可少的有效方法.如本章对于锐角三角函数的概念,教科书是利用学生对直角三角形的认识以及相似三角形的有关知识引入的,结合几何图形来定义锐角三角函数的概念,将数形结合起来,有利于学生理解锐角三角函数的本质;再如,解直角三角形在实际中有着广泛的应用,先将这些实际问题抽象成数学问题,并利用锐角三角函数解直角三角形时,离不开几何图形,这时往往需要根据题意画出几何图形,通过分析几何图形得到边、角等关系,再通过计算、推理等使实际问题得到解决.因此,在本章教学时,要注意加强数形结合,在引入概念、化简计算、解决实际问题时都要尽量画图帮助分析,通过图形帮助找到直角三角形的边、角之间的关系,加深对直角三角形本质的理解.
4、数学来源于生活,又服务于生活.在教学中还要提供一些具有实际背景和应用意义的题目,让学生经历“问题情境――建立模型――解释、应用与拓展” 解决问题的过程.